Inflatable Tubular Structures Rigidized With Foams

ثبت نشده
چکیده

NASA Tech Briefs, March 2010 Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment. The cavity inside the inner polyimide sleeve is pressurized for deployment (see figure). The internal pressure provides out-of-plane stiffness for the inner sleeve, preventing its collapse and thereby creating the barrier needed to maintain the radially innermost surface of the injected foam in the desired cylindrical shape during expansion and curing of the foam. Lightweight end plugs seal the ends of the boom. The plugs contain inlets for compressed air and the foam; they also contain escape ports for gas generated during expansion of the foam. Lightweight flexible hoses are used to inflate the interior of the boom and to inject the foam. In preparation for a typical application, an assembly of sleeves and end plugs destined to be deployed and rigidized into a boom would be packaged compactly, the inner and outer sleeves being accordion-folded into a storage canister. For deployment, compressed air would be admitted to the cavity enclosed by the inner sleeve. While this cavity remained pressurized, the foam would be injected into the space between the inner and outer sleeves. Once the injected foam had cured, the internal pressure would be released and the boom would be ready for service. This work was done by Michael L. Tinker of Marshall Space Flight Center and Andrew R. Schnell of Tennessee Technological University. For further information, contact Sammy Nabors, MSFC Commercialization Assistance Lead, at [email protected]. Refer to MFS-31776-1. Inflatable Tubular Structures Rigidized With Foams Lightweight booms could be deployed from compact stowage and rigidized in place. Marshall Space Flight Center, Alabama

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active inflatable auxetic honeycomb structural concept for morphing wingtips

This paper describes a new concept of an active honeycomb structure for morphing wingtip applications based on tubular inflatable systems and an auxetic cellular structure. A work-energy model to predict the output honeycomb displacement versus input pressure is developed together with a finite element formulation, and the results are compared with the data obtained from a small-scale example o...

متن کامل

Endurance of Damping Properties of Foam-Filled Tubes

The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of str...

متن کامل

The Effect of RC Core on Rehabilitation of Tubular Structures

In the present study, the effect of core on shear lag phenomenon in tubular structures is investigated. Three different tubular structure models including model without core, model with central core and model with central core but eliminated in last 15 stories have been analyzed. A shear lag index is defined for evaluating these models. From examination of the results, the effective influence o...

متن کامل

Initial performance assessment of hybrid inflatable structures

Inflatable technology for space applications is under continual development and advances in high strength fibers and rigidizable materials have pushed the limitations of these structures. This has lead to their application in deploying large-aperture antennas, reflectors and solar sails. However, many significant advantages can be achieved by combining inflatable structures with structural stif...

متن کامل

Effect of Fe additive on plastic deformation for crush-boxes with closed-cell metal foams, Part I: Al-composite foam compression response

AbstractIn this paper, we investigate effect of Fe–intermetallic compounds on plastic deformation of closed-cell composite Aluminum Foam as filler of thin-walled tubes. However, deformation of the Aluminum foam-filled thin-walled tubes as crushed-box will be presented in Part (II). Composite foams of AlSi7SiC3 and AlSi7SiC3-(Fe) as closed cell were synthesized by powder metallurgy foaming metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010